Полные погонные сопротивления цепи фаза нуль провода. Электролаборатория. Замер сопротивления цепи «фаза-нуль». Электроизмерения. Что такое петля фаза ноль

В электроустановках до 1000 В с глухозаземленной нейтралью безопасность обслуживания электрооборудования при пробое на корпус обеспечивается отключением поврежденного участка с минимальным временем. При замыкании фазного провода на соединенный с нейтралью трансформатора (или генератора) нулевой провод или на корпус оборудования образуется контур, состоящий из цепи фазного и нулевого проводников. Это контур принято называть петлей «фаза-нуль». Рассчитать сопротивление контура L-N (или контура L-PE) достаточно сложно, поскольку существует множество факторов, которые учесть в расчетах очень сложно (таких как наличие переходных сопротивлений коммутационных аппаратов, наличие других путей тока аварийного режима — трубопроводов, металлоконструкций, повторных заземлений т.д.), — а при измерении они учитываются автоматически.

Характеристики устройств защиты и полное сопротивление петли «фаза-нуль» (в случае, когда сопротивлением в месте замыкания можно пренебречь), должны обеспечивать при замыкании на открытые проводящие части автоматическое отключение питания в пределах нормированного времени. Это требование выполняется при условии:

Где Z S — полное сопротивление петли «фаза-нуль»;
I A — ток, меньший тока замыкания, вызывающий срабатывание устройства защиты;
U 0 — номинальное напряжение (действующее значение) между фазой и землей.
Величину Z S необходимо измерять для определения правильности используемой защиты. Её можно получить при использовании производимых фирмой Sonel измерителей параметров петли короткого замыкания, к которым относятся приборы серии MZC-200, серии MZC-300, а также приборы MZC-310S, MIE-500, MPI-511. Использование измерителей активного сопротивления MZC-200 является допустимым в цепях, где значением реактивного сопротивления можно пренебречь (X S →0) и активное сопротивление R S принять за полное Z S:

Для измерения малых величин сопротивлений необходимо использовать измерители полного сопротивления петли короткого замыкания, так как погрешность, вызванная пренебрежением реактивной составляющей полного сопротивления, может иметь существенное значение. В этом случае применяются измерители MZC-300, MZC-303Е, MZC-310S, MIE-500 и MPI-511.

Измерители активного сопротивления и полного сопротивления могут быть с успехом применены для измерения сопротивления заземляющего устройства. При этом в качестве источника необходимо использовать одну из фаз.

Результат измерения есть сумма сопротивлений проверяемого заземляющего устройства, рабочего заземления, внутреннего сопротивления источника фазы и фазного провода. Этот результат несколько больше реального сопротивления заземляющего устройства, однако, если результат меньше допустимой величины для испытуемого заземляющего устройства, устройство заземления можно считать правильным, и не использовать более точных методов измерения.

Метод измерения

Напряжение в испытуемой цепи измеряют с включенным и отключенным сопротивлением R, и сопротивление петли «фаза-нуль» рассчитывают по формуле:

Где
R S — сопротивление петли «фаза-нуль»,
U 1 — напряжение, измеренное при отключенном R,
U 2 — напряжение, измеренное при включенном R,
I R — ток, протекающий через сопротивление нагрузки

Метод падения напряжения на нагрузочном сопротивлении рекомендован приложением D1 стандарта ГОСТ Р 50571.16-99.

Особенности измерения

Zs ≠ Rs (только для серии MZC-200)

Измерители серии MZC-200 измеряют активное (R S) сопротивление петли короткого замыкания.

Для справки:

Рассмотрим влияние реактивной составляющей полного сопротивления на примере распределительной секции многоэтажного здания, выполненной одножильными проводами больших сечений или кабелями с медными жилами (ρ = 0,018 Ω∙м/мм2) не находящихся в одной оболочке, сечением S = 240 мм 2 и протяженностью около 50 метров. Для такой электропроводки характерна высокая, ничем некомпенсированная индуктивность. При суммарной длине фазного и нулевого провода 100 м L = 0,57∙10 -4 Гн), сопротивления R, X, Z вычисляется следующим образом:

Как видно, полное сопротивление почти в 2,6 раз больше активного. Рассмотренный случай является нетипичным, но показывающим необходимость измерения «истинного (полного) сопротивления».

Измерение под напряжением

Измерители параметров петли производят измерения в линиях, находящихся под напряжением. Коммутация эталонного резистора осуществляется через тиристорный блок (на полупериод промышленной частоты — 10 мс); применение быстродействующего АЦП (аналого-цифрового преобразователя) позволяет реализовать данный метод измерения с высокой точностью. Угол между напряжением и током в исследуемой сети по модулю (при отставании или опережении тока) должен быть не более 180.

Преимущества косвенного метода измерения:

  • нет необходимости в постороннем источнике питания;

  • результатом являются реальные значения сопротивления петли короткого замыкания от места подключения измерителя и ожидаемого тока короткого замыкания;

  • питающий трансформатор не исключается из схемы электроснабжения на время измерения;

  • осуществляется контроль действующего значения напряжения в процессе измерения.
  • Вычисление тока

    Ожидаемый ток короткого замыкания рассчитывается по отношению к номинальному напряжению сети по формуле:

    Отклонение напряжения сети от номинального вызовет линейное отклонение рассчитанного тока от действительного.

    Целостность цепи

    Перед выполнением измерения активного сопротивления автоматически проверяется целостность измеряемых цепей. Контроль целостности проводников происходит в течение 10 мс током с максимальной величиной 35 мA. После того как установлено, что сопротивление цепи менее 3 кΩ происходит процесс измерения активного сопротивления сети большим испытательным током. Отсутствие целостности цепи сигнализируется на дисплее и звуковым сигналом. Этот факт можно использовать для контроля целостности контура.

    Оценка сопротивления заземления

    Величина сопротивления заземляющего устройства измеряется через петлю «фаза-нуль». Источником напряжения служит фазный провод, измерительный ток зависит от величины токоограничивающего резистора. При оценке величины сопротивления заземления необходимо помнить о завышенных результатах измерения: R S =R u +R r +R ист +R фазы

    Автозамена L и N

    В приборах MZC, MIE, MPI cоблюдение правильности подключения фазного провода к зажиму L, а нейтрального провода к зажиму N не является обязательным, так как измеритель автоматически идентифицирует подключенные провода и в случае необходимости самостоятельно переключит зажимы.

    Функция RCD

    В приборах MZC-303E, MPI-511 функции RCD применяется для измерения параметров цепи «фаза-защитный провод» без обязательного срабатывания УЗО с номинальным током не менее 30 мА. Прибор производит измерение сопротивления петли короткого замыкания в диапазоне от 0 до 1999 Ω. При этом выполняется серия искусственных замыканий (каждое из них длится 20 мс) с измерительным током не более 15 мА. Время выполнения всего измерения составляет около 10 секунд. Применение такого большого диапазона измерения вызвано вероятностью значительных величин полного сопротивления петли L — PE в электроустановках с выключателями дифференциального тока. Величина сопротивления заземления (наибольшая составляющая полного сопротивления цепи L — PE) должна быть в этом случае такова, чтобы произошло срабатывание дифференциального выключателя при появлении недопустимого напряжения прикосновения. Например, полное сопротивление цепи L — PE для выключателя дифференциального тока с номинальным током 30 мА в электроустановке с допустимым напряжением прикосновения 50 В будет равным 1666 Ω. Данная величина превышает возможности диапазонов измерения 200 Ω.

    Преимущества True RMS

    Почти все приборы при измерении напряжения показывают значение, которое предлагается рассматривать как эффективное значение входного сигнала. Однако в некоторых приборах зачастую измеряется среднее абсолютное или максимальное значение сигнала, а шкала градуируется так, чтобы показание соответствовало эквивалентному эффективному значению в предположении, что входной сигнал имеет синусоидальную форму.

    Не следует упускать из виду, что точность таких приборов крайне низка, если сигнал содержит гармонические составляющие. Для измерения тока с искаженными кривыми необходимо при помощи анализатора кривой сигнала проверить форму синусоиды, после чего использовать измеритель с усреднением показаний только в том случае, если кривая окажется действительно идеальной синусоидой. Или же можно постоянно использовать измеритель с истинно среднеквадратическими показаниями и не проверять параметры кривой.

    Современные измерители подобного типа используют усовершенствованные технологии измерения, позволяющие определить реальные эффективные значения переменного тока и напряжения вне зависимости от того, является ли токовая кривая идеальной синусоидой или имеет гармонические искажения. Приборы Sonel типа MZC-310S, REN-700, CMP-1000, MPI-511 относятся к измерителям класса TRUE RMS.

    В соответствии с ПТЭЭП для контроля чувствительности защит к однофазным замыканиям на землю в установках до 1000 В с глухозаземленной нейтралью необходимо выполнять измерения сопротивления петли “фаза-нуль”.

    Для измерения сопротивления петли “фаза-нуль” существует ряд приборов, различающихся схемами, точностью и др. Области применения различных приборов приведены в табл. 1.

    Приборы для измерения электрических параметров заземляющих устройств, в том числе измерения сопротивления петли фаза-нуль

    Проверка производится для наиболее удаленных и наиболее мощных электроприемников, но не менее 10% их общего количества.

    Проверку можно производить расчетом по формуле Zпет = Zп + Zт / 3 где Zп- полное сопротивление проводов петли фаза-нуль; Zт - полное сопротивление питающего трансформатора. Для алюминиевых и медных проводов Zпет = 0,6 Ом/км.

    По Zпет определяется ток однофазного короткого замыкания на землю: Iк = Uф / Zпет Если расчет показывает, что кратность тока однофазного замыкания на землю на 30% превышает допустимые кратности срабатывания защитных аппаратов, указанные в , то можно ограничиться расчетом. В противном случае следует провести прямые измерения тока короткого замыкания специальными приборами, например, типов ЭКО-200, ЭКЗ-01 или по методу амперметра-вольтметра на пониженном напряжении.

    Метод амперметра - вольтметра при измерении сопротивления петли фаза-нуль

    Испытуемое электрооборудование отключают от сети. Измерение производят на переменном токе от понижающего трансформатора. Для измерения делается искусственное замыкание одного фазного провода на корпус электроприемника. Схема испытания - приведена на рисунке.

    После подачи напряжения измеряются ток I и напряжение U, измерительный ток должен быть не менее 10 - 20 А. Сопротивление измеренной петли Zп=U/I. Полученное значение Zп должно быть арифметически сложено с расчетным значением полного сопротивления одной фазы питающего трансформатора R т/3.

    Программа проведения измерений сопротивления петли фаза-нуль

    1. Ознакомление с проектной и исполнительной документацией и результатами предыдущих испытаний и измерений.

    2. Подготовка необходимых электроизмерительных приборов и испытательных устройств, проводников и защитных средств.

    3. После выполнения организационно-технических мероприятий и допуска на объект, выполнение измерений и испытаний

    4. Оценка и обработка результатов измерений и испытаний.

    5. Оформление измерений и испытаний.

    6. Корректировка схем, оформление подписей о пригодности (не пригодности) электрооборудования к дальнейшей эксплуатации.

    Одним из важных моментов в эксплуатации электрооборудования является обеспечение его долговременной, нормальной работы, без каких-либо сбоев. Основными отрицательными факторами, негативно влияющими на нормальную работу электроприборов и оборудования, выступают перегрузки электрических сетей и короткое замыкание. В таких ситуациях важная роль отводится защитной аппаратуре, помогающей избежать серьезных последствий, в том числе и для обслуживающего персонала.

    Для того, чтобы своевременно предотвратить подобные ситуации, необходимо проводить измерения, с целью выявления неисправностей в электрических сетях. Одним из первых измеряется полное сопротивление цепи фаза - нуль.

    Для начала следует разобраться, что представляет собой петля фаза - нуль, и зачем измерять ее сопротивление?

    В электроустановках с напряжением до 1000 вольт, в заземленной нейтрали нулевой провод соединяется с нулем трансформатора. Этот провод наглухо соединяется с общим контуром заземления. В случае замыкания фазного провода на корпус или на нейтральный провод, происходит образование контура, в состав которого входит электрическая цепь фазы и ноля. Этот контур и получил название петли фаза - ноль.

    Проведение измерений петли фаза - нуль

    • Полное сопротивление контура, которое включает в себя обмотки трансформатора, фазный и нулевой проводники, а также контакты различных автоматов, пускателей и прочих приборов.
    • Значение тока, возникающего при коротком замыкании. Этот параметр позволяет выявить способность автоматов защищать при коротком замыкании.

    Измерение контура фаза - ноль

    • падение напряжения при отключенной электрической цепи;
    • падение напряжения на сопротивлении нагрузки;
    • специальным устройством короткого замыкания в электрической цепи.

    Основным способом проверки контура с использованием современных измерительных приборов, является способ падения напряжения в сопротивлении нагрузки. Данный метод отличается безопасностью, удобством и значительной экономией времени.

    Схемы, при помощи которых измеряется сопротивление цепи фаза - нуль

    В статье рассмотрены метод расчета сопротивления цепи фаза - ноль в электроустановках напряжением до 1000 В с глухозаземленной нейтралью и правила вычисления тока короткого замыкания в линии, что позволяет проверить согласование параметров цепи с характеристиками аппаратов защиты при электроустановки. Приведенные в статье данные предназначены в первую очередь для расчетов распределительных и групповых сетей.

    Для выполнения расчетов токов короткого замыкания в трансформаторных подстанциях необходимо дополнительно учитывать тип, мощность, схему подключения, и напряжение на входе трансформатора. Поэтому использование данной работы для расчета трансформаторных подстанций позволит лишь приблизительно оценить их параметры.

    В общем случае сопротивление цепи фаза ноль R L - N равно:

    где Z т /3 - сопротивление трансформатора, Ом; R Σ пер - суммарное переходное сопротивление контактов, Ом; R Σ авт -суммарное сопротивление всех автоматических выключателей, Ом; R n - удельное сопротивление n-го участка цепи Ом/км (по таблице 1); L n - длина n-го участка цепи, км; R дуги - сопротивление дуги в месте короткого замыкания, Ом.

    Таблица 1

    Сечение фазных жил мм 2

    Сечение нулевой жилы мм 2

    Полное сопротивление цепи фаза - ноль, Ом/км при температуре жил кабеля +65 градусов

    Материал жилы:

    Алюминий

    Z цепи (кабеля)

    Z цепи (кабеля)

    Таблица 2

    Мощность трансформатора, кВ∙А

    Сопротивление трансформатора, Zт/3, Ом (Δ/Υ)

    Таблица 3

    I ном. авт. выкл, А

    50 и более

    Таблица 4

    R цепи, Ом

    При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза - ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:

    R L - N = R расп + R пер.гр + R авт.гр + Rn гр ∙Ln гр +Rдуги (2)

    где, R расп - измеренное сопротивление цепи фаза - ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; R пер.гр - сопротивление переходных контактов в групповой линии, Ом; R авт.гр - суммарное сопротивление автоматических выключателей - вводного группового щита и отходящей групповой линии, Ом; Rn гр - удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Ln гр - длина n-й групповой линии, км.

    Рассмотрим процесс вычисления сопротивления цепи фаза - ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.


    Исходные данные:

    Трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник - звезда» - по таблице 2 находим Zт/3=0,014 Ом;

    Питающая сеть - кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм 2 и нулевой - 50 мм 2 . По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;

    Распределительная сеть - кабель с медными жилами длиной 50 метров и сечением жил 35 мм 2 . По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:

    1,25 Ом/км∙0,05 км=0,0625 Ом;

    Групповая сеть - кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм 2 . По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:

    17,46 Ом/км∙0,035 км=0,61 Ом;

    Автоматический выключатель отходящий линии - 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;

    Переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.

    Суммируем все полученные значения и получаем сопротивление цепи фаза - ноль без учета сопротивления дуги R L - N =0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.

    Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины R L - N =0,80 Ом+0,075 Ом=0,875 Ом.

    В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.

    Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в 1,2 - 1,25 раза.

    В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3. При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза - ноль 0,875 Ом. При таком сопротивлении цепи ток короткого замыкания Iкз составит величину

    U ф / R L - N =220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.

    Максимальное сопротивление цепи фаза - ноль для автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис. 1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом - 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом - 0, 265 Ом=0,875 Ом. Его максимальную длину L при сечении жил кабелей 2,5 мм 2 определим при помощи таблицы 1.

    L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.

    Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза - ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель. Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть оказывается недостаточным для мгновенного отключения сети. Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.

    Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару. Именно поэтому возникли к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов. Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия .

    Одним из важных факторов в работе электрооборудования считается продолжительность его эксплуатации. Большое значение имеет надежная и устойчивая работа всех приборов и устройств. При различных повреждениях, коротких замыканиях и перегрузках, должно обеспечиваться моментальное срабатывание защитной аппаратуры и отключение опасного участка.

    Поэтому, необходимо заранее предусмотреть исправность самого электрооборудования и средств защиты, где большое значение имеет петля фаза-ноль.

    Физическое понятие петли фаза-ноль

    Во всех электроустановках, напряжением до 1000 вольт оборудуются системы глухого заземления. В такой системе, петля фаза-ноль представляет собой контур, образующийся в результате соединения проводника фазы и нулевого рабочего провода. В некоторых схемах, фазный проводник может соединяться с защитным проводником. Полученная цепь, во всех случаях, обладает собственным сопротивлением.

    Теоретические расчеты сопротивления петли представляют серьезную проблему. Это объясняется переходными сопротивлениями, которые имеются в рубильниках, контакторах, автоматах и прочей аппаратуре, включаемой в общую цепь. Особую сложность представляет вычисление точного пути токов при аварийных ситуациях, где нужно учитывать и влияние различных металлических конструкций.

    Поэтому, для получения точных данных о значении сопротивления, существуют специальные приборы, позволяющие автоматически учитывать все необходимые параметры.

    Проведение измерений

    Необходимость измерения петли фаза-ноль производится в определенных ситуациях. Прежде всего, это мероприятие осуществляется при вводе электроустановок в эксплуатацию после монтажа или реконструкции. В этом случае, тестирование проводится во время приемосдаточных испытаний. Внеплановые измерения могут проводиться по требованию организаций, контролирующих электробезопасность установок, а также, в любое время, по желанию клиента.

    Когда измеряется петля фаза-ноль, в обязательном порядке определяется величина сопротивления. Этот показатель получается в результате параметров сопротивления, образующегося в обмотках питания, фазном и нулевом проводнике. Одновременно измеряются переходные сопротивления контактов коммутационной аппаратуры.

    Кроме сопротивления, измеряется величина тока, образующегося при коротком замыкании. Для этого применяется специальный прибор, с помощью которого возможно автоматически получить все необходимые показатели.

    После проведения всех измерений все полученные результаты сравниваются с уставкой, рассчитанной на тот или иной автоматический выключатель.

    Все мы хотим видеть электроснабжение нашего электрооборудования безопасным и безупречным, но не всегда желаемое можно выдавать за действительное. В процессе беспощадной эксплуатации энергосистемы и электрооборудования, пользователи забывают о том, что её надо периодически обследовать и заранее выявлять всевозможные неисправности. Не стоит дожидаться, когда пропадёт фаза в недрах скрытой электропроводки , а для включения электрооборудования срочно надо искать калоши и диэлектрические перчатки , подпирая палкой постоянно отключающийся автоматический выключатель. Как же уберечь себя от свалившихся на голову неприятностей? Для предупреждения и устранения вышеперечисленных неисправностей, требуется периодически проводить комплекс электроизмерений. В этой статье мы хотим рассказать вам о замере сопротивления цепи «фаза - нуль». Как и для каких целей требуется проводить замер сопротивления цепи «фаза - нуль».

    Статьи цикла:»Электролаборатория и электроизмерения»:
    1. Электролаборатория и электроизмерения. Введение
    2. Что такое электролаборатория и для чего нужны электроизмерения
    3. Электролаборатория. Смета на проведение комплекса электроизмерений электросети. Расчёт стоимости работ на электроизмерения
    4. Электролаборатория проводит визуальный осмотр электропроводки и электрооборудования
    5. Электролаборатория. Замер заземления. Электропроводка. Электрооборудование
    6. Электролаборатория. Замер сопротивления изоляции. Электроизмерения. Электропроводка
    7. Электролаборатория. Замер сопротивления цепи “фаза-нуль”. Электроизмерения
    8. Электролаборатория – замеры и испытание выключателей автоматических управляемых дифференциальным током (УЗО)
    9. Электролаборатория выполняет испытания (прогрузку) автоматических выключателей
    10. Электролаборатория проводит электроизмерение “Замер сопротивления заземляющих устройств”

    Протокол электроизмерения петли "фаза - нуль"

    Читайте также:


      Очень часто специалисты электролаборатории (инженеры эл.наладчики) слышат в свою сторону укоры, что работа по комплексу электроизмерений бессмысленна и бесполезна, так как она влечёт за собой дополнительные затраты со стороны заказчиков. Давайте...


      Игорь Какое именно оборудование проверяется и какова периодичность профилактического измерения электрооборудования и электросетей в офисных центрах. Ответ: Испытаниям и электроизмерениям подлежат все электроустановки здания, от вводного аппарата защиты в вводно-распределительном устройстве до розеток...


      Андрей Электролаборатория в результате замера сопротивления петли “фаза-нуль” на мостовом кране (1971 года ввода в эксплуатацию) выдала заключение, что вводной автомат (А3144 600А Iуст. тепл=750А, Iкз=4200А) не прошел проверку, т.к. Zфаза-0=0.35 ...


      Виктор Степанович Что включает в себя замер полного сопротивления цепи ” фаза-нуль”? Подскажите, как часто должен производиться замер полного сопротивления цепи “фаза-нуль”? В соответствии с ПТЭЭП для контроля чувствительности защит к однофазным...


      Вячеслав Выполняя электроизмерения, замер сопротивления петли “фаза-нуль”, прибор показал на одной фазе 1.3 Ом, на остальных - 0.8 Ом. Питающий 4 х 6, медь. Длина кабельной линии 40метров, установлен...

    15 Комментария(-ев) на ”Электролаборатория. Замер сопротивления цепи «фаза-нуль». Электроизмерения”

      Здравствуйте!

      Подскажите каким проводом будит правильно заземлить передвижную эл.установку 380В. Проводом ПЩ или ПВЗ(в оболочке). Просто на одном комплексе видел заземление смонтированное проводом ПЩ который был в прозрачной оболочке на барабане.Комплексы нового поколения Узо итп.

      Здравствуйте,Алексей!Согласно ПУЭ, заземляющие проводники,а также защитные, и проводники уравнивания потенциалов в передвижных электроустановках должны быть медными, гибкими.Наименьшее сечение заземляющих проводников должно равняться:
      1.сечению фазных проводников, при сечении до 16 кв мм.,
      2.16 кв.мм. при сечении фазных проводников от 16 до 35 кв мм,
      3.сечению фазного провода пополам при сечении фазного провода более 35 кв мм.

      Здравствуйте! Большое спасибо за ответ. Про сечение ясно.Так каким проводом должно(и может допускаться) выполнение заземления. Многопроволочным проводом с полвинилхлорид. изоляцией или ПЩ без изоляции? Вот на это мне нужен ответ. Спасибо

      Здравствуйте! Проверяемый щиток состоит из вводного автомата и пяти отходящих. Проверяю петлю фаза-ноль. С отходящими все понятно: оцениваются по току КЗ. Но как вводить в отчет этот вводной автомат, и каковы критерии его оценки? Как быть с током КЗ для него?

      Здравствуйте, Олег!
      Значение тока однофазного короткого замыкания не нормируется, однако в соответствии с ПУЭ-7 ток должен быть достаточным для обеспечения требуемого времени срабатывания. Вам необходимо во время замеров сопротивления петли «фаза-нуль» определить фактическое значение тока однофазного короткого замыкания. Значение тока однофазного короткого замыкания определяется расчетным путем на основании значения сопротивления петли «фаза-нуль», полученного путем замеров во время испытаний. Требуется убедиться, что фактический ток однофазного короткого замыкания обеспечивает время срабатывания защитного аппарата, не превышающее значений, нормированных п. 1.7.79 ПУЭ-7 п. 1.7.79, для чего необходимо иметь времятоковую (обратнозависимую) характеристику этого защитного аппарата. Если документация завода-изготовителя на соответствующие защитные аппараты, содержащая времятоковые характеристики, отсутствует, то эти характеристики следует снимать при выполнении пусконаладочных работ или периодических электроиспытаний.

      Вы можете зарегистрироваться на форуме и более подробно обсудить «

      Здравствуйте, Георгий!
      Ваш вопрос перенаправлен на. Вы можете зарегистрироваться на форуме и более подробно обсудить « » с участниками форума.

    Сопротивление цепи фаза - ноль

    В статье рассмотрены метод расчета сопротивления цепи фаза - ноль в электроустановках напряжением до 1000 В с глухозаземленной нейтралью и правила вычисления тока короткого замыкания в линии, что позволяет проверить согласование параметров цепи с характеристиками аппаратов защиты при электроустановки. Приведенные в статье данные предназначены в первую очередь для расчетов распределительных и групповых сетей.

    Для выполнения расчетов токов короткого замыкания в трансформаторных подстанциях необходимо дополнительно учитывать тип, мощность, схему подключения, и напряжение на входе трансформатора. Поэтому использование данной работы для расчета трансформаторных подстанций позволит лишь приблизительно оценить их параметры.

    В общем случае сопротивление цепи фаза ноль R L - N равно:

    где Z т /3 - сопротивление трансформатора, Ом; R Σ пер - суммарное переходное сопротивление контактов, Ом; R Σ авт -суммарное сопротивление всех автоматических выключателей, Ом; R n - удельное сопротивление n-го участка цепи Ом/км (по таблице 1); L n - длина n-го участка цепи, км; R дуги - сопротивление дуги в месте короткого замыкания, Ом.

    Таблица 1

    Сечение фазных жил мм 2

    Сечение нулевой жилы мм 2

    Полное сопротивление цепи фаза - ноль, Ом/км при температуре жил кабеля +65 градусов

    Материал жилы:

    Алюминий

    Z цепи (кабеля)

    Z цепи (кабеля)

    Таблица 2

    Мощность трансформатора, кВ∙А

    Сопротивление трансформатора, Zт/3, Ом (Δ/Υ)

    Таблица 3

    I ном. авт. выкл, А

    50 и более

    Таблица 4

    R цепи, Ом

    При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза - ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:

    R L - N = R расп + R пер.гр + R авт.гр + Rn гр ∙Ln гр +Rдуги (2)

    где, R расп - измеренное сопротивление цепи фаза - ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; R пер.гр - сопротивление переходных контактов в групповой линии, Ом; R авт.гр - суммарное сопротивление автоматических выключателей - вводного группового щита и отходящей групповой линии, Ом; Rn гр - удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Ln гр - длина n-й групповой линии, км.

    Рассмотрим процесс вычисления сопротивления цепи фаза - ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.

    Исходные данные:

    Трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник - звезда» - по таблице 2 находим Zт/3=0,014 Ом;

    Питающая сеть - кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм 2 и нулевой - 50 мм 2 . По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;

    Распределительная сеть - кабель с медными жилами длиной 50 метров и сечением жил 35 мм 2 . По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:

    1,25 Ом/км∙0,05 км=0,0625 Ом;

    Групповая сеть - кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм 2 . По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:

    17,46 Ом/км∙0,035 км=0,61 Ом;

    Автоматический выключатель отходящий линии - 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;

    Переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.

    Суммируем все полученные значения и получаем сопротивление цепи фаза - ноль без учета сопротивления дуги R L - N =0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.

    Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины R L - N =0,80 Ом+0,075 Ом=0,875 Ом.

    В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.

    Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя , имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в 1,2 - 1,25 раза.

    В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3. При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза - ноль 0,875 Ом. При таком сопротивлении цепи ток короткого замыкания Iкз составит величину

    U ф / R L - N =220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.

    Максимальное сопротивление цепи фаза - ноль для автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис. 1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом - 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом - 0, 265 Ом=0,875 Ом. Его максимальную длину L при сечении жил кабелей 2,5 мм 2 определим при помощи таблицы 1.

    L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.

    Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза - ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель. Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть оказывается недостаточным для мгновенного отключения сети. Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.

    Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару. Именно поэтому возникли к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов. Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия.

    Электричество в настоящее время – это не только удобство и качество проживания, но это и большая опасность для человека. И хорошо, если проводку в доме делают профессионалы. Ведь свою работу они обязательно проверяют на степень безопасности. Каким образом? Для этого используется метод, основанный на создании высокой нагрузки в электрической разводке . Этот метод электрики называют измерением сопротивления петля фаза ноль.

    Начать надо с пути, который проходит электрический ток от подстанции до розетки в доме. Обращаем ваше внимание, что в старых домах в электрике чаще всего присутствует сеть без заземляющего контура (земля), то есть, к розетке подходит фазный провод и нулевой (фаза и ноль).

    Конечно, грамотно проведенный монтаж – это гарантия корректной работы сетевого участка. Если в процессе сборки и разводки были сделаны отклонения от норм и требований или просто сделаны ошибки, то это гарантия увеличения потерь, сбоя работы сети, аварий. Вот почему специалисты проводят измерения показателей сети и анализируют их. Что это такое, и как формируется проверочная схема.

    Видео измерения петля фаза ноль

    Как измеряется сеть

    Что это значит?

    Необходимо понять, что электродвижущая сила, которая появляется в обмотках трансформатора, образует электрический ток. Он теряет свое напряжение при прохождении через потребителя и подводящие провода. При этом сам ток преодолевает несколько видов сопротивления:

    Как измерить сопротивление петля фаза ноль

    Чтобы подсчитать полное сопротивление сети (петля фазы и ноля), необходимо определить электродвижущую силу , которая создается на обмотках трансформатора. Правда, на подстанцию без специального допуска не пустят, поэтому измерение петли фаза-ноль придется делать в самой розетке. При этом учитывайте, что розетка не должна быть нагружена. После чего необходимо замерить напряжение под нагрузкой. Для этого включается в розетку любой прибор, это может быть даже обычная лампочка накаливания. Замеряется напряжение и сила тока.

    Что касается точно проведенных замеров. Самодельными приборами это можно сделать, никаких проблем здесь нет, но вот только точность замеров в данном случае будет очень низкой. Поэтому для этого процесса рекомендуется использовать вольтметры и амперметры с высокой точностью (класс 0,2).


    Процесс измерения петля фаза ноль

    Где провести замер

    Измерение петли фаза-ноль – розетки. Но опытные электрики знают, что это место не единственное. К примеру, дополнительное место – это клеммы в распределительном щите . Если в дом заводится трехфазная электрическая сеть, то проверять сопротивление петли фаза ноль надо на трех фазных клеммах. Ведь всегда есть вероятность, что контур одной из фаз был собран неправильно.

    Цель проводимых замеров


    Замер сопротивления петля фаза ноль

    Что касается второй позиции. В принципе, здесь также необходимо провести некоторые расчеты, основанные на законе и формуле Ома. Основная задача определить силу тока короткого замыкания, ведь чаще всего от него и надо будет защищать электрическую сеть . Поэтому в данном случае используется формула:

    I = 16 х 10 х 1,1 = 176 А. Расчетная сила тока короткого замыкания у нас составила – 150 А. о чем это говорит.

    • Во-первых, автомат был неправильно выбран и установлен. Его надо обязательно заменить.
    • Во-вторых, ток КЗ в сети меньше, чем автомата. Значит, он не отключится. А это может привести к пожару.

    Электричество в настоящее время – это не только удобство и качество проживания, но это и большая опасность для человека. И хорошо, если проводку в доме делают профессионалы. Ведь свою работу они обязательно проверяют на степень безопасности. Каким образом? Для этого используется метод, основанный на создании высокой нагрузки в электрической разводке. Этот метод электрики называют измерением сопротивления петли фаза ноль.

    Что это такое, и как формируется проверочная схема

    Начать надо с пути, который проходит электрический ток от подстанции до розетки в доме. Обращаем ваше внимание, что в старых домах в электрике чаще всего присутствует сеть без заземляющего контура (земля), то есть, к розетке подходит фазный провод и нулевой (фаза и ноль).

    Итак, от подстанции до дома сеть может быть длиною в несколько сот метров, к тому же она разделена на несколько участков, где используются разного сечения кабели и несколько распределительных щитов. То есть, это достаточно сложная коммуникация. Но самое главное, весь участок имеет определенное сопротивление, которое приводит к потерям мощности и напряжения. И это независимо от того, качественно ли проведена сборка и монтаж или не очень. Этот факт известен специалистам, поэтому проект сети делается с учетом данных потерь.

    Конечно, грамотно проведенный монтаж – это гарантия корректной работы сетевого участка. Если в процессе сборки и разводки были сделаны отклонения от норм и требований или просто сделаны ошибки, то это гарантия увеличения потерь, сбоя работы сети, аварий. Вот почему специалисты проводят измерения показателей сети и анализируют их.

    Необходимо отметить, что вся электрическая цепочка – это зацикленный контур, образованный фазным контуром и нулевым. По сути, это своеобразная петля. Поэтому ее так и называют петля фаза ноль.

    Как измеряется сеть

    Чтобы это понять, необходимо рассмотреть схему, в которой присутствует потребитель, подключенный через обычную розетку. Так вот к розетке, как уже было сказано выше, подводятся фаза и ноль. При этом до розетки происходит потеря напряжения за счет сопротивления магистральных кабелей и проводов. Это известно давно, описан данный процесс формулой Ома:

    Правда, эта формула описывает соотношение величин постоянного электрического тока. Чтобы перевести ее на ток переменный, придется учитывать некоторые показатели:

    • Активная составляющая сопротивления сети.
    • Реактивная, состоящая из емкостной и индуктивной части.

    Что это значит? Необходимо понять, что электродвижущая сила, которая появляется в обмотках трансформатора, образует электрический ток. Он теряет свое напряжение при прохождении через потребителя и подводящие провода. При этом сам ток преодолевает несколько видов сопротивления:

    • Активное – это потребитель и провода. Это самая большая часть сопротивления.
    • Индуктивное – это сопротивление встроенных обмоток.
    • Емкостное – это сопротивление отдельных элементов.


    Чтобы подсчитать полное сопротивление сети (петля фазы и ноля), необходимо определить электродвижущую силу, которая создается на обмотках трансформатора. Правда, на подстанцию без специального допуска не пустят, поэтому измерение петли фаза-ноль придется делать в самой розетке. При этом учитывайте, что розетка не должна быть нагружена. После чего необходимо замерить напряжение под нагрузкой. Для этого включается в розетку любой прибор, это может быть даже обычная лампочка накаливания. Замеряется напряжение и сила тока.

    Внимание! Нагрузка на розетке должна быть стабильной в процессе проведения замеров. Это первое. Второе – оптимальным вариантом считается, если в схеме ток будет силой от 10 до 20 ампер. В противном случае дефекты сетевого участка могут не проявиться.

    Теперь по закону Ома можно определить полное сопротивление петли. При этом придется учитывать, что напряжение (замеряемое) в розетке может отклоняться от номинального при нагрузке и без таковой. Поэтому сначала надо высчитать сопротивление при разных величинах напряжения. Понятно, что при нагрузке напряжение будет больше, поэтому полное сопротивление петли – это разница двух сопротивлений:

    Rп=R2-R1, где R2 – это сопротивление петли при нагрузке, R1 – без таковой.

    Что касается точно проведенных замеров. Самодельными приборами это можно сделать, никаких проблем здесь нет, но вот только точность замеров в данном случае будет очень низкой. Поэтому для этого процесса рекомендуется использовать вольтметры и амперметры с высокой точностью (класс 0,2). Правда, такие измерительные приборы сегодня используются в основном в измерительных лабораториях. Обращаться с ними надо уметь. К тому же такие приборы требуют частого проведения тестирования.


    Хотя надо отдать должное рынку, сегодня можно такие приборы приобрести в свободном доступе. Стоят они недешево, но для профессионала это необходимая вещь.

    Где провести замер

    Измерение петли фаза-ноль – розетки. Но опытные электрики знают, что это место не единственное. К примеру, дополнительное место – это клеммы в распределительном щите. Если в дом заводится трехфазная электрическая сеть, то проверять сопротивление петли фаза ноль надо на трех фазных клеммах. Ведь всегда есть вероятность, что контур одной из фаз был собран неправильно.

    Цель проводимых замеров

    Итак, цели две – определение качества эксплуатируемых сетей и оценка надежности защитных блоков и приборов.

    Что касается первой позиции, то здесь придется сравнивать полученные замеры, а, точнее, сопротивление петли с проектной. В данном случае, если расчетный показатель оказался выше нормативного, то на поверку явно неправильно произведенный монтаж или другие дефекты магистрали. К примеру, грязь или коррозия контактов, малое сечение кабелей и проводов, неграмотно проведенные скрутки, плохая изоляция и так далее. Если проект электрической сети по каким-то причинам отсутствует, то для сравнения расчетного сопротивления петли с номинальным необходимо будет обратиться в проектную организацию. Чтобы разобраться в таблицах и расчетах самому, надо в первую очередь обладать инженерными знаниями по электрике.


    Что касается второй позиции. В принципе, здесь также необходимо провести некоторые расчеты, основанные на законе и формуле Ома. Основная задача определить силу тока короткого замыкания, ведь чаще всего от него и надо будет защищать электрическую сеть. Поэтому в данном случае используется формула:

    Iкз=Uном/Rп.

    Если считать, что сопротивление петли фаза к нулю равно, например, 1,47 Ом, то сила тока короткого замыкания будет равна 150 ампер. Под эту величину и придется подбирать прибор защиты, то есть, автомат. Правда, в правилах ПУЭ есть определенные нормы, которые создают некий запас прочности. Поэтому Iном увеличивают на коэффициент 1,1.

    Подобрать автомат под все вышеуказанные величины можно, если сравнить их в таблицах ПУЭ. В нашем случае потребуется автомат класса «С» с Iном=16 А и кратностью 10. В итоге получаем:

    I=16х10х1,1=176 А. Расчетная сила тока короткого замыкания у нас составила – 150 А. о чем это говорит.

    • Во-первых, автомат был неправильно выбран и установлен. Его надо обязательно заменить.
    • Во-вторых, ток КЗ в сети меньше, чем автомата. Значит, он не отключится. А это может привести к пожару.
    Понравилось? Лайкни нас на Facebook