Электротехника расчет цепей. ДЗ - Расчёт сложной цепи постоянного тока. Задачи, требующие решения

В зависимости от числа источников ЭДС (питания) в схеме, ее топологии и других признаков цепи анализируются и рассчитываются различными методами. При этом известными обычно являются ЭДС (напряжения) источников электроэнергии и параметры цепи, расчетными - напряжения, токи и мощности.

В этой главе мы ознакомимся с методами анализа и расчета цепей постоянного тока различной сложности.

Расчет цепей с одним источником питания

Когда в цепи имеется один активный элемент (источник электроэнергии), а другие являются пассивными, например резисторы /? t , R 2 ,..., то цепи анализируются и рассчитываются методом преобразования схем , сущность которого заключается в преобразовании (свертке) исходной схемы в эквивалентную и последующем разворачивании, в процессе которых определяются искомые величины. Проиллюстрируем этот метод для расчета цепей с последовательным, параллельным и смешанным соединением резисторов.

Цепь с последовательным соединением резисторов. Рассмотрим этот вопрос на следующем качественном примере. От идеализированного источника ЭДС Е (R 0 = 0), на выходных зажимах которого имеется напряжение U, т.е. когда E=U , через последовательно соединенные сопротивления R { , R 2 ,..., R n питается нагрузка (приемник) с сопротивлением R H (рис. 2.1, а).

Рис . 2.1

Требуется найти напряжение, сопротивление и мощность цепи эквивалентной заданной, изображенной на рис. 2.1, б, делая соответствующие выводы и обобщения.

Решение

А. При известных сопротивлениях и токе напряжения на отдельных элементах цепи, согласно закону Ома, находились бы так:

Б. Общее напряжение (ЭДС) цепи, согласно второму закону Кирхгофа, запишется так:



Г. Умножив все члены (2-2) на ток / или (2-5) на Р, будем иметь откуда

В. Разделив все члены (2-2) на ток /, получим где

Формулы (2-3), (2-5), (2-7) показывают, что в цепи с одним источником питания и последовательным соединением сопротивлений эквивалентные напряжение, сопротивление и мощность равны арифметическим суммам напряжений, сопротивлений и мощностей элементов цепи.

Приведенные соотношения и выводы свидетельствуют о том, что исходную схему по рис. 2.1, а с сопротивлениями /? 2 , R„ можно заменить (свернуть) простейшей по рис. 2.1, б с эквивалентным сопротивлением R 3 , определяемым по выражению (2-5).

а) для схемы по рис. 2.1, б справедливы соотношения U 3 = U = RI , где R = R 3 + R u . Исключив из них ток /, получим выражение

которое показывает, что напряжение U 3 на одном из сопротивлений цепи, состоящей из двух, соединенных последовательно, равно произведению общего напряжения U на отношение сопротивления этого участка R 3 к общему сопротивлению цепи R. Исходя из этого

б) ток и напряжения в цени но рис. 2.2, б можно записать в различных вариантах:

Решенные задачи

Задача 2.1. Чему равны сопротивление, напряжение и мощность цепи по рис. 2.1, а, если I = 1 A, R x = 1 Ом, Д 2 = 2 Ом, = 3 Ом, R u = 4 Ом?

Решение

Напряжения на резисторах, очевидно, будут равны: U t =IR^ = 1 1 = 1 В, U 2 = IR 2 = = 1 2 = 2 В, U n = /Л я = 1 3 = 3 В, t/ H = ZR H = 1 4 = 4 В. Эквивалентное сопротивление цепи: R 3 = R { + /? 9 + R n = 1 + 2 + 3 = 6 Ом. Сопротивление, напряжение и мощность цепи: /? = &, + /?„ = 6 + 4= 10 Ом; U= U { + U 2 + U„+U n = 1+2 + 3 + 4 = 10 В, или U=IR = = 1 10= 10 В; Р= Ш= 10 - 1 = 10 Вт, или Р= UJ+ U 2 I + U n I+ U U I= 11+21+31 + + 4 1 = 10 Вт, или Р = PR X + PR 2 + PR a + PR n = 12 1 + 12 2 + 12 3 + 12 4 = 10 Вт, или Р = Щ /R x +U? 2 /R 2 +UZ /R n +1/2 /R n = 12 / 1 + 22/2 + 32/3 + 42 /4 = 10 Вт.

Задача 2.2. В цепи по рис. 2.1, а известны: U = МО В, R { = Ом, R 2 = 2 Ом, = = 3 Ом, R H = 4 Ом. Определить U 2 .

Решение

R = /?! + /?, + Л 3 + Л 4 = Л,+ Л Н = 1+2 + 3 + 4 = 6 + 4 = 10 Ом, 1=11/R= 110/10 = = 11 А, // 2 = Л? 2 = 11 2 = 22 В или U 2 =UR 2 /R = 110 2 / 10 = 22 В.

Задачи, требующие решения

Задача 2.3. В цепи по рис. 2.1, а известны: U = МО В, R^ = Ом, R 2 = 2 Ом, R n = = 3 Ом, R u = 4 Ом. Определить Р„.

Задача 2.4. В цепи по рис. 2.1, б известны: U= 110 В, U H = 100 В, = 2 Ом. Определить Р э.

Задача 2.5. В цепи по рис. 2.1,6 известны: U= 110 В, R t = 3 Ом, Д н = 2 Ом. Определить . Выбираются удобные для построения масштабы для токов и напряжений. Сначала строим на комплексной плоскости вектора токов (рисунок 4), в соответствии с первым законом Кирхгофа для схемы 2. Сложения векторов осуществляется по правилу параллелограмма.

Рисунок 4 векторная диаграмма токов

Затем строим на комплексной плоскости вектора рассчитанных напряжений проверка по таблице 1 рисунок 5.

Рисунок 5 Векторная диаграмма напряжений и токов

4.8 Определение показаний приборов

Амперметр измеряет ток, проходящий через его обмотку. Он показывает действующее значение тока в ветви, в которую он включен. В схеме (рис.1) амперметр показывает действующее значение (модуль) тока . Вольтметр показывает действующее значение напряжения между двумя точками электрической цепи, к которым он подключен. В рассматриваемом примере (рис.1) вольтметр подключен к точкам а и b .

Вычисляем напряжение в комплексной форме:

Ваттметр измеряет активную мощность, которая расходуется на участке цепи, заключенном между точками, к которым подключена обмотка напряжения ваттметра, в нашем примере (рис.1) между точками а и b .

Активную мощность, измеряемую ваттметром, можно вычислить по формуле

,

где - угол между векторами и .

В этом выражении действующее значение напряжения, на которое подключена обмотка напряжения ваттметра, и действующее значение тока, проходящего через токовую обмотку ваттметра.

Или рассчитываем полную комплексную мощность

ваттметр покажет активную мощность Р.

4.9 Расчёт резонансных цепей

4.9.1 Добавить в схему замещения элемент для получения резонанса напряжений. Например, схема замещения представляет RL цепь. Тогда необходимо добавить последовательно включённый конденсатор С – элемент. Получается последовательная RLC цепь.

4.9.2 Добавить в схему замещения элемент для получения резонанса токов. Например, схема замещения представляет RL цепь. Тогда необходимо добавить параллельно включённый конденсатор С – элемент.

5. Собрать схему в среде MULTISIM . Поставить приборы и измерить токи, напряжение и мощность.

Сборка схемы в среде Multisim 10.1. На рисунке 6 рабочее окно в среде Multisim . Панель приборов располагается справа.

Рисунок 6 рабочее окно в среде Multisim

Разместить на рабочем поле необходимые для схемы элементы. Для этого на верхней панели инструментов слева нажмём кнопку « Place Basic » (см. Рисунок 7). Выбор резистор: появится окно «Select a Component », где из списка «Family » выбрать «Resistor ». Под строкой «Component » появятся номинальные значения сопротивлений, выбираем нужное нажатием левой кнопки мыши или же непосредственным введением в графу «Component » необходимого значения. В Multisim используются стандартные приставки системы СИ (см. Таблицу 1)

Таблица 1

Обозначение Multisim

(международное)

Русское обозначение

Русская приставка


Рисунок 7

В поле «Symbol » выбираем элемент. После выбора, нажимаем кнопку «OK » и размещаем элемент на поле схемы нажатием левой кнопки мыши. Далее можно продолжать размещение необходимых элементов или нажать кнопку «Close », чтобы закрыть окно «Select a Component ». Все элементы можно поворачивать для более удобного и наглядного расположения на рабочем поле. Для этого необходимо навести курсор на элемент и нажать левую кнопку мыши. Появится меню, в котором надо выбрать опцию «90 Clockwise » для поворота на 90° по часовой стрелке или «90 CounterCW » для поворота на 90° против часовой стрелки. Размещённые на поле элементы необходимо соединить проводами. Для этого наводим курсор на клемму одного из элементов, нажимаем левую кнопку мыши. Появляется провод, обозначенный пунктиром, подводим его к клемме второго элемента и снова нажимаем левую кнопку мыши. Проводу так же можно придавать промежуточные изгибы, обозначая их кликом мыши (см. Рисунок 8). Схему необходимо заземлить.

Подключаем к цепи приборы. Для того, чтобы подсоединить вольтметр, на панели инструментов выбираем «Place Indicator », в списке Family Voltmetr _ V », приборы перевести в режим измерения переменного тока (АС).

Измерение токов

Соединив все размещённые элементы, получаем разработанную схему рисунок.

На панели инструментов выбираем «Place Source ». В списке «Family » открывшегося окна выбираем тип элемента «P ower Souces », в списке «Component » - элемент «DGND ».

Измерение напряжения

Измерение мощности

6. Контрольные вопросы

1. Сформулируйте законы Кирхгофа и объясните правила составления системы уравнений по законам Кирхгофа.

2. Метод эквивалентных преобразований. Объясните последовательность расчета.

3. Уравнение баланса мощностей для цепи синусоидального тока. Объясните правила составления уравнения баланса мощностей.

4. Объясните порядок расчета и построения векторной диаграммы для Вашей схемы.

5. Резонанс напряжений: определение, условие, признаки, векторная диаграмма.

6. Резонанс токов: определение, условие, признаки, векторная диаграмма.

8. Сформулируйте понятия мгновенного, амплитудного, среднего и действующего значений синусоидального тока.

9. Напишите выражение для мгновенного значения тока в цепи, состоящей из соединенных последовательно элементов R и L , если к зажимам цепи приложено напряжение .

10. От каких величин зависит значение угла сдвига фаз между напряжением и током на входе цепи с последовательным соединением R , L , C ?

11. Как определить по экспериментальным данным при последовательном соединении сопротивлений R , X L и X C значения величин Z , R , X , Z К, R К, L , X C , C ,cosφ , cosφ К?

12. В последовательной RLC цепи установлен режим резонанса напряжений. Сохранится ли резонанс, если:

а) параллельно конденсатору подключить активное сопротивление;

б) параллельно катушке индуктивности подключить активное сопротивление;

в) последовательно включить активное сопротивление?

13. Как должен изменяться ток I в неразветвленной части цепи при параллельном соединении потребителя и батареи конденсаторов в случае увеличения емкости от С = 0 до С = ∞ , если потребитель представляет собой:

а) активную,

б) емкостную,

в) активно-индуктивную,

г) активно-емкостную нагрузку?

6. Литература

1. Бессонов Л.А. Теоретические основы электротехники- М.: Высшая школа, 2012г.

2. Беневоленский С.Б., Марченко А.Л. Основы электротехники. Учебник для ВУЗов – М.,Физматлит, 2007г.

3. Касаткин А.С., Немцов М.В. Электротехника. Учебник для вузов- М.: В. ш, 2000г.

4. Электротехника и электроника. Учебник для вузов, книга 1. / Под редакцией

В.Г.Герасимова. - М.: Энергоатомиздат, 1996г.

4. Волынский Б.А., Зейн Е.Н., Шатерников В.Е. Электротехника, -М.:

Энергоатомиздат, 1987г.

Приложение 1

Схема группа 1

Схема группа 2

Приложение 2

Z 1

Z2

Z3

Z4

U

Законы Кирхгофа.

∑I=0

∑E=∑IR

Порядок расчета

  1. Произвольно выбираем направление тока в ветвях.
  2. Произвольно выбираем направление обхода контуров.
  3. Зная полярность источников, проставляем направление ЭДС.
  4. Составляем уравнения по первому закону Кирхгофа. Их должно быть но одно меньше, чем узлов.
  5. Составляем уравнения по второму закону Кирхгофа из расчета, что общее число уравнений должно быть равно числу неизвестных токов.
  6. Решаем систему уравнений и определяем неизвестные токи. Если в результате решения какой-либо ток окажется со знаком «-», то направление его противоположно выбранному.

Приведем пример.

Дано:

  1. 1 =r 2 =0;
  2. 1 =0,3 Ом;
  3. 2 =1 Ом;
  4. 3 =24 Ом;

Е 1 =246 В;

Е 2 =230В

Найти:

I 1 ,I 2 ,I 3 .

Решение:

Итак, на схеме рисуем направления токов (1), согласно этим направлениям рисуем направления обхода контуров (2), согласно полярности источников питания ставим направления ЭДС (3).

Согласно первому закону Кирхгофа:

I 1 -I 2 -I 3 =0 → -I 2 =I 3 -I 1

Теперь составляем уравнения по второму закону Кирхгофа:

E 1 =I 1 R 1 +I 3 R 3

Е 2 =-I 2 R 2 +I 3 R 3

Получили систему из трех уравнений. Решаем.

E 2 =(I 3 -I 1)R 2 +I 3 R 3

230=I 3 (1+R 3)-I 1 =25I 3 -I 1 → I 1 = 25I 3 -230

E 1 =I 1 R 1 +I 3 R 3 =(25I 3 -230)R 1 +I 3 R 3

246=0,3(25I 3 -230)+24I 3

246=7,5I 3 -69+24I 3

31,5I 3 =315

I 3 =10A

I 1 =25∙10-230=20A

I 2 =I 1 -I 3 =20-10=10A

2. Метод контурных токов

Этот метод основан на законе Кирхгофа

  1. Произвольно выбираем направления контурных токов (рис.2)
  2. Составляем уравнения по второму закону Кирхгофа.

E 1 -E 2 =I 1 (R 1 +R 2)-I 2 R 2

E 2 =I 2 (R 2 +R 3)-I 1 R 2

246-230=I 1 (0,3+1)-I 2 → 16=1,3I 1 -I 2 → I 2 =1,3I 1 -16

230=25(1,3I 1 -16)-I 1

31,5I 1 =630

I 1 =20A

I 2 =1,3∙20-16=10A

3. Определяем истинные токи.

I 1 =I 1 =20A

I 2 =I 1 -I 2 =10A

I 3 =I 2 =10A

3. Метод двух узлов

Этот метод применим для схем, имеющих два узла

  1. Выбираем произвольно направления токов в ветвях в одну и ту-же сторону (см. рис.3 - стрелки со штрихами).
  2. Определяем проводимости ветвей:

Q 1 =1/R 1 =1/0,3=3,33 Сим.

Q 2 =1/R 2 =1 Сим.

Q 3 =1/R 3 =1/24=0,0416 Сим.

  1. Определяем напряжение между двумя узлами по формуле:

U=∑E q /∑ ar q=(E 1 +E 2 q 2)/(q 1 +q 2 +q 3)=(246∙3,31+230)/4,3716=240 В

  1. Определяем токи в ветвях

I=(E-U)q

I 1 =(E 1 -U)q 1 =(246-240)3,33=20A

I 2 =(E 2 -U)q 2 =230-240=-10A

I 3 =-Uq 3 =240∙0,0416=-10А

Так как, значения I 2 и I 3 получились отрицательными, то эти токи будут противоположными по направлению (на рисунке показаны жирные сплошные стрелки).

4. Метод наложения или метод суперпозиции

Метод основан на том, что любой ток в цепи создается совместным действием всех источников питания. Поэтому можно рассчитать частичные токи от действия каждого источника питания отдельно, а затем, найти истинные токи как арифметическую составляющую частичных.

Решение

1. Рис. 4. Е 2 =0; r 2 ≠0

R э =R 2 R 3 /(R 2 +R 3)+R 1 =24/25+0,3=0,96+0,3=1,26 Ом

I’ 1 =E 1 /R э =246/1,26=195,23 Ом

U ab =I’ 1 R 23 =195,23∙0,96=187,42 В

I’ 2 =U ab /R 2 =187,42 A

I’ 3 = U ab /R 3 =187,42/24=7,8 A

2. Рис. 5. E 1 =0; R 1 ≠0

R э =R 1 R 3 /(R 1 +R 3)+R 2 =0,3∙24/24,3+1=0,29+1=1,29 Ом

I” 2 =E 2 /R э =230/1,29=178,29 A

U ab =I” 2 R 13 =178,29∙0,29=51,7 В

I” 1 =U ab /R 1 =51,7/0,3=172,4 A

I” 3 =U ab /R 3 =51,7/24=2,15 A

3. Определяем истинные токи.

I 1 =I’ 1 -I” 1 =195,23-172,4=22,83 A

I 2 =I’ 2 -I” 2 =187,42-178,29=9,13 A

I 3 =I’ 3 -I” 3 =7,8-2,15=5,65 A

Является определение некоторых параметров на основе исходных данных, из условия задачи. На практике используют несколько методов расчёта простых цепей. Один из них базируется на применении эквивалентных преобразований, позволяющих упростить цепь.

Под эквивалентными преобразованиями в электрической цепи подразумевается замена одних элементов другими таким образом, чтобы электромагнитные процессы в ней не изменились, а схема упрощалась. Одним из видов таких преобразований является замена нескольких потребителей, включённых последовательно или параллельно, одним эквивалентным.

Несколько последовательно соединённых потребителей можно заменить одним, причём его эквивалентное сопротивление равно сумме сопротивлений потребителей, . Для n потребителей можно записать:

rэ = r1 +r2+…+rn ,

где r1 , r2, ..., rn – сопротивления каждого из n потребителей.

При параллельном соединении n потребителей эквивалентная проводимость gэ равна сумме проводимостей отдельных элементов, включённых параллельно:

gэ= g1 + g2 +…+ gn .

Учитывая, что проводимость является обратной величиной по отношению к сопротивлению, можно эквивалентное сопротивление определить из выражения:

1/rэ = 1/r1 + 1/r2 +…+ 1/rn,

где r1, r2, ..., rn – сопротивления каждого из n потребителей, включённых параллельно.

В частном случае, когда параллельно включены два потребителя r1 и r2, эквивалентное сопротивление цепи:

rэ = (r1 х r2)/(r1 + r2)

Преобразования в сложных цепях, где отсутствует в явном виде элементов (рисунок 1), начинают с замены элементов, включённых в исходной схеме треугольником, на эквивалентные элементы, соединённые звездой.

Рисунок 1. Преобразование элементов цепи: а - соединённых треугольником, б - в эквивалентную звезду

На рисунке 1, а треугольник элементов образуют потребители r1, r2, r3. На рисунке 1, б этот треугольник заменён эквивалентными элементами ra, rb, rc, соединёнными звездой. Чтобы не происходило изменение потенциалов в точках a, b, с схемы, сопротивления эквивалентных потребителей определяются из выражений:

Упрощение исходной цепи можно также осуществить заменой элементов, соединённых звездой, схемой, в которой потребители .

В схеме, изображённой на рисунке 2, а, можно выделить звезду, образованную потребителями r1, r3, r4. Эти элементы включены между точками c, b, d. На рисунке 2, б между этими точками находятся эквивалентные потребители rbc, rcd, rbd, соединённые треугольником. Сопротивления эквивалентных потребителей определяются из выражений:

Рисунок 2. Преобразование элементов цепи: а - соединённых звездой, б - в эквивалентный треугольник

Дальнейшее упрощение схем, приведённых на рисунках 1, б и 2, б, можно осуществлять путём замены участков с последовательным и параллельным соединением элементов их эквивалентными потребителями.

При практической реализации метода расчёта простой цепи с помощью преобразований выявляются в цепи участки с параллельным и последовательным соединением потребителей, а затем рассчитываются эквивалентные сопротивления этих участков.

Если в исходной цепи в явном виде нет таких участков, то, применяя описанные ранее переходы от треугольника элементов к звезде или от звезды к треугольнику, проявляют их.

Данные операции позволяют упростить цепь. Применив их несколько раз, приходят к виду с одним источником и одним эквивалентным потребителем энергии. Далее, применяя , рассчитывают токи и напряжения на участках цепи.

Расчет сложных цепей постоянного тока

В ходе расчёта сложной цепи необходимо определить некоторые электрические параметры (в первую очередь токи и напряжения на элементах) на основе исходных величин, заданных в условии задачи. На практике используются несколько методов расчёта таких цепей.

Для определения токов ветвей можно использовать: метод, базирующийся на основании непосредственного применения , метод узловых напряжений.

Для проверки правильности вычисления токов необходимо составить . Из следует, что алгебраическая сумма мощностей всех источников питания цепи равна арифметической сумме мощностей всех потребителей.

Мощность источника питания равна произведению его ЭДС на величину тока, протекающего через данный источник. Если направление ЭДС и тока в источнике совпадают, то мощность получается положительной. В противном случае она отрицательна.

Мощность потребителя всегда положительна и равна произведению квадрата тока в потребителе на величину его сопротивления.

Математически баланс мощностей можно записать в следующем виде:

где n – количество источников питания в цепи; m – количество потребителей.

Если баланс мощностей соблюдается, то расчет токов выполнен правильно.

В процессе составления баланса мощностей можно выяснить, в каком режиме работает источник питания. Если его мощность положительна, то он отдает энергию во внешнюю цепь (например, как аккумулятор в режиме разряда). При отрицательном значении мощности источника последний потребляет энергию из цепи (аккумулятор в режиме заряда).

В электротехнике принято считать, что простая цепь – это цепь, которая сводится к цепи с одним источником и одним эквивалентным сопротивлением. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. Расчет цепей постоянного тока производится с помощью закона Ома и Кирхгофа.

Пример 1

Два резистора подключены к источнику постоянного напряжения 50 В, с внутренним сопротивлением r = 0,5 Ом. Сопротивления резисторов R 1 = 20 и R 2 = 32 Ом. Определить ток в цепи и напряжения на резисторах.

Так как резисторы подключены последовательно, эквивалентное сопротивление будет равно их сумме. Зная его, воспользуемся законом Ома для полной цепи, чтобы найти ток в цепи.

Теперь зная ток в цепи, можно определить падения напряжений на каждом из резисторов.

Проверить правильность решения можно несколькими способами. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем.

Но с помощью закона Кирхгофа удобно проверять простые цепи, имеющие один контур. Более удобным способом проверки является баланс мощностей .

В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками.

Мощность источника определяется как произведение ЭДС на ток, а мощность полученная приемником как произведение падения напряжения на ток.


Преимущество проверки балансом мощностей в том, что не нужно составлять сложных громоздких уравнений на основании законов Кирхгофа, достаточно знать ЭДС, напряжения и токи в цепи.

Пример 2

Общий ток цепи, содержащей два соединенных параллельно резистора R 1 =70 Ом и R 2 =90 Ом, равен 500 мА. Определить токи в каждом из резисторов.

Два последовательно соединенных резистора ничто иное, как делитель тока . Определить токи, протекающие через каждый резистор можно с помощью формулы делителя, при этом напряжение в цепи нам не нужно знать, потребуется лишь общий ток и сопротивления резисторов.

Токи в резисторах

В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю.

Если вы не помните формулу делителя тока, то можно решить задачу другим способом. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Для того чтобы его найти, нужно сначала рассчитать сопротивление цепи

А затем напряжение

Зная напряжения, найдем токи, протекающие через резисторы

Как видите, токи получились теми же.

Пример 3

В электрической цепи, изображенной на схеме R 1 =50 Ом, R 2 =180 Ом, R 3 =220 Ом. Найти мощность, выделяемую на резисторе R 1 , ток через резистор R 2 , напряжение на резисторе R 3 , если известно, что напряжение на зажимах цепи 100 В.



Чтобы рассчитать мощность постоянного тока, выделяемую на резисторе R 1 , необходимо определить ток I 1 , который является общим для всей цепи. Зная напряжение на зажимах и эквивалентное сопротивление цепи, можно его найти.

Эквивалентное сопротивление и ток в цепи



Отсюда мощность, выделяемая на R 1

Понравилось? Лайкни нас на Facebook